Introduction to smooth manifolds / by John M. Lee.
Material type:
- 9781441999818 (hbk. : alk. paper)
- 1441999817 (hbk. : alk. paper)
- 9781441999825 (ebk.)
- 514.34 23
- QA613 .L44 2013
- QA613
Item type | Current library | Home library | Collection | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
MATH-LiB General Stack | MATH-LiB | NFIC | 514.34 JOH/I (Browse shelf(Opens below)) | Checked out | 01/28/2023 | CP4990 | ||
![]() |
MATH-LiB General Stack | MATH-LiB | NFIC | 514.3 P13 (Browse shelf(Opens below)) | 1 | Checked out | 12/25/2022 | 197581 |
Includes bibliographical references (p. 675-677) and indexes.
1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.
License restrictions may limit access.
There are no comments on this title.